|
|
||
Настоящая диссертация состоит из двух частей. Первая часть посвящена математическим основам новых методов оптимизации, вторая часть - примеры и приложения этих методов к ряду технических задач. В отличие от классической постановки задачи оптимизации: а) Дан ункционал. Требуется найти его абсолютную минималь. Эта задача в подавляющем большинстве случаев очень трудна и чаще всего неразрешима. Поэтому в первой части рассматриваются также иные постановки задач: б) Найти более "узкое" подмножество, содержащее абсолютную минималь. в) Найти подмножество решений лучших, чем данное. г) Найти оценки снизу данного функционала. В настоящее время большинство исследователей, работающих в области оптимизации, заняты решением задачи в традиционной (классической) постановке - отысканием точной минимали (задача а). Инженера же, как правило, в реальных задачах интересует подмножество квазиоптимальных решений, выбирая из которого, он заранее уверен в получении функционала не хуже заданной величины (задача в) и оценки снизу, показывающих насколько далек он от точного оптимального оптимального решения (задача г). К тому же обычно у него есть много дополнительных соображений, которые нельзя учесть в математической модели или которые бы ее сильно усложнили. Постановка задачи в форме в дает ему определенную свободу выбора. Задача г имеет и самостоятельный интерес. Если есть оценка снизу, близкая к точной нижней грани функционала, то задачу оптимизации часто можно решить подбором квазиоптимального решения. Задача же б может существенно облекчить решение любой из перечисленных задач, так как сужает множество, на котором следует искать решение. Перечисленные неклассические постановки задач потребовали новых методов решения, отличных от известных методов вариационного исчисления, принципа максимума или динамического программирования. Оказалось, что новые методы обладают значительной общностью и при попытке решить с их помощью одну из перечисленных задач можно в качестве побочного продукта получить решение другой задачи. Это может принести пользу. Так если получена хорошая оценка снизу, то, сравнивая с ней разные инженерные решения, часто удается получить решение, очень мало отличающееся от оптимального. Излагаемый в первой части материал не сложен, но он опирается на ряд элементарных понятий и символику из теории множеств. В диссертации принята двойная нумерация формул, теорем и рисунков. Первая цифра обзначает номер параграфа, вторая - номер формулы или теоремы в этом параграфе. Первая цифра в рисунках обозначает номер главы, вторая - номер рисунка в данной главе. Краткое изложение (Автореферат диссертации, 28 стр.) есть в интнрнете http://viXra.org/abs/1503.0081, http://www.twirpx.com , Некоторые главы изложены более подробно в специальном учебном пособии "Новые методы оптимизации и их применение", Москва, Издательство МВТУ им.Баумана, 1972г., 220 стр. (См. РГБ, Российская Государственная Библиотека, Ф-801-83/869-6). http://vixra.org/abs/1504.0011 v4. , https://www.academia.edu/11054777/ Пособие содержит также большое число примеров, упражнений и задач. |
Министерство Высшего и среднего специального образования
РСФСР
Московский авиационный технологический
институт
К.т.н., доцент БОЛОНКИН А.А.
ЧАСТЬ 1
НОВЫЕ МЕТОДЫ ОПТИМИЗАЦИИ И ИХ ПРИМЕНЕНИЕ
В ЗАДАЧАХ ДИНАМИКИ УПРАВЛЯЕМЫХ СИСТЕМ
(Диссертация на соискание ученой степени
достора технических наук)
NEW METHODS OF OPTIMIZATION AND THEIR APPLICATIONS
IN PROBLEMS OF DYNAMIC AND CONTROL SYSTEMS
(Thesis of next Ph.D.)
1969 г.
Д.т.н. Б. Кругляк