Эткин В. А.: другие произведения.

Обобщение закона Кулона на случай взаимопроникающих зарядов

Журнал "Самиздат": [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь]
Peклaмa:

Peклaмa:


 Ваша оценка:
  • Аннотация:
    Дано обобщение закона Кулона на случай перекрытия объемных зарядов и как следствие показана однородность распределения зарядов в проводнике

        Введение. Как известно, в 1785 г. Ш. Кулон, прямыми опытами на изобретенных им крутильных весах установил, что модуль Fе силы взаимодействия Fе двух точечных зарядов Q1 и Q2, прямо пропорционален произведению их модулей ׀Q1׀ и ׀Q2׀ и обратно пропорционален квадрату расстояния между ними R [2]:

Fе = kе ׀Q1׀Ј׀Q2׀/R 2, (1)

где kе=1/4πεо - коэффициент пропорциональности, именуемый электрической постоянной.

       Представляет интерес обобщить этот закон на случай объемных зарядов, имеющих определенную протяженность в пространстве и способных, подобно электронным облакам, проникать друг в друга.

         Взаимодействие объемных зарядов. Известно, что взаимодействие двух однородных объемных зарядов, разделенных некоторым промежутком, эквивалентно взаимодействию двух точечных зарядов, расположенных в их центрах. Это правило действует до тех пор, пока два объемных заряда не начинают проникать друг в друга. Тогда возникает перераспределение заряда в большем из тел, весьма быстро приводящее к изменению в нем плотности заряда. При этом будет происходить увеличение плотности его заряда при одинаковом их знаке и уменьшение заряда - в случае их противоположного знака вследствие их взаимной компенсации (рис.1). Рассмотрим вначале последний случай, полагая, что при частичном "перекрытии" объёмов V1 и V2 двух противоположных зарядов, полагая, что при этом закон Кулона не нарушается.

        Пусть мы имеем два заряда одинаковой плотности ρ1 = ρ2: Q1 = ∫ρ1dV1 и Q2 = ∫ρ2dV2. При их взаимном проникновении (рис.1, Б,С), каждый из них уменьшится вследствие взаимной компенсации на величину Q, равную заряду области перекрытия V. Для сопоставимости вариантов с различной величиной Q представим дело так, что два объёмных заряда Q1 и Q2 касаются друг друга (рис.1, А), оставляя расстояние R неизменным, так что взаимопрникновение их сказывается лишь на величине этих зарядов. Если при этом величину Q выразить в долях меньшего из зарядов (допустим, Q2) путем введения "коэффициента перекрытия"

kп = Q/Q2,   (2)

закону Кулона (1) можно придать вид:

Fе* = - kе ׀Q1׀Ј׀Q2׀(1- kпŋ)(1- kп)/R 2   = Fе (1- kпŋ)(1- kп)    (3)

где Fе*- сила притяжения разноименных зарядов с учетом их взаимного проникновения;

ŋ = ׀Q2׀/׀Q1׀ - относительная величина проникающего заряда.

       Как следует из этого выражения, кулоновская сила взаимодействия зарядов, распределенных в некотором объеме, уменьшается при их взаимном проникновении (перекрытии), причем относительная величина силы Fе*/Fе при одном и том же расстоянии между центрами зарядов R зависит как от степени перекрытия 0 < kп < 1, так и от относительной величины "смешиваемых" зарядов 0 < ŋ < 1. Характер этой зависимости для трех значений ŋ = 0; 0,5 и 1,0 показан на рис.2. Как следует из него, компенсация разноименных зарядов при их взаимопроникновении приводит в соответствии с законом Кулона к уменьшению силы их притяжения и становится равной нулю при полном взаимопроникновении даже в том случае, когда центры объемных зарядов не совпадают (рис.1). При этом относительная величина смешиваемых объемных зарядов сказывается только на темпе снижения силы и степени нелинейности кривых, характеризующих ослабление силы.

Рассмотрим теперь случай взаимопроникновения одноименных зарядов Q1 и Q2. Тогда один из зарядов (меньший) будет уменьшаться, а больший - возрастать на ту же величину Q. При этом с учётом (2) закон Кулона (1) примет вид:

Fе* = - kе ׀Q1׀Ј׀Q2׀(1+ kпŋ)(1- kп)/R 2   = Fе (1+ kпŋ)(1- kп).   (4)

На рис. 2 кривые, соответствующие этому выражению, совпадают при ŋ = 0,5 и 1,0 с аналогичной зависимостью для разноименных зарядов. Однако при других значениях ŋ они приобретают вид выпуклых линий, подобных пунктирной линии на рис.2. Характерно тем не менее, что общая тенденция к уменьшению сил взаимодействия по мере перекрытия зарядов сохраняется. И в том, и в другом случае при совмещении объема, занимаемого объемными зарядами, кулоновские силы обращаются в нуль независимо от того, совпадают центры этих зарядов или нет. Новизна этого результата состоит в том, что электрическое поле внутри шара исчезает согласно закону Кулона не только при однородном, но и при неоднородном распределении плотности заряда в нем (которое, впрочем, быстро исчезает в результате релаксации).

        Обсуждение результатов. Изложенное позволяет сделать несколько важных выводов:

1.      Согласно (3) и (4), сила F, создаваемая зарядом Q1 + Q2, образовавшимся в результате полного слияния уединенных объемных зарядов Q1 и Q2, равна нулю  независимо от знака этих зарядов. Это положение, непосредственно следовавшее из закона Кулона для точечных зарядов в связи с обращением в нуль произведения QQ2 при исчезновении любого из сомножителей, сохраняет силу и для объемных зарядов. Тем самым еще раз подтверждается одно из основных положений энергодинамики [1], согласно которому электрические поля создаются не зарядами самими по себе, а вследствие пространственной неоднородность в распределении их в пространстве. То же самое следовало и из известного выражения силы как производной от потенциальной энергии данного рода Еп по пространственной координате r :

 F ≡ - (∂Еп/r)         (5)

        

      Согласно (4) сила F = 0 (поле исчезает), если потенциальная энергия Еп не зависит от координаты поля (т.е. распределена равномерно). Это положение игнорируется как классической, так и квантовой теорией поля. Между тем он имеет принципиальное значение в связи с попытками объяснить неустойчивость ядер силами отталкивания одноименных зарядов.

2.      Сила взаимодействия двух распределенных в объеме зарядов не обращается в бесконечность при сближении объемных зарядов, а имеет вполне определенный максимум, соответствующий нулевому расстоянию R между этими объемами, и при их дальнейшем сближении (перекрытии) не возрастает, а постепенно понижается, обращаясь в нуль при полном совмещении объемов, занимаемых зарядами. Этот перепад сил является причиной, способствующей преодолению кулоновского барьера, и может служить альтернативой "туннельному эффекту" в квантовой механике.

3.      Выявляется ошибочность представления об отсутствии свободных электронов в объеме проводника и их сосредоточении в поверхностном слое (рис.3, А). Со времен Б.Франклина (1747 г.), обнаружившего отсутствие электрического поля E в проводниках, во всех учебниках по электротехнике утверждается, что свободные заряды в проводнике сосредотачиваются в его поверхностном слое ввиду наличия сил их отталкивания. При этом исчезновение электрического поля в проводниках связывают со смещением свободных зарядов настолько, чтобы скомпенсировать внешнее электрическое поле E. В результате этого в поверхностном слое проводника якобы образуются разноименные заряды "-" и "+" с отличной от нуля плотностью (как это показано на рис.3, А). Отсюда делается вывод, что в сечении проводника divE = 0, так что плотность заряда внутри проводника ρ = 0 и отлична от нуля только в тонком пограничном слое у поверхности проводника, как это иллюстрируется рис.3,А.  Такое представление не выдерживает критики по целому ряду причин. Прежде всего, металлу приписывается не свойственная ему поляризация свободных зарядов с образованием противоположных зарядов у поверхности проводника, помещенного в поле Е. Но в таком случае внутри проводника неизбежно возникало бы собственное поле вектора электрического смещения D, равное внешнему полю Е, но направленное против него, что на рис. 3,А почему-то не показывается. Между тем наличие поля D в проводнике противоречит опытным фактам, свидетельствующим о его отсутствии. Далее, если бы плотность свободных электронов была бы отлична от нуля только в "пристенном" слое, активное сопротивление проводника зависело бы не от его сечения, как это следует из опыта, а от периметра проводника.   

В действительности равенство divE = 0 имеет место только вне проводника и обусловлено отсутствием в окружающей проводник среде свободных электронов. Внутри же проводника divE претерпевает скачок дважды - на левой границе поле E падает до нуля и вновь скачком возрастает до прежнего значения на правой границе, как это показано на рис.3,В. При этом отсутствие поля в самом проводнике означает лишь постоянство плотности заряда в нем по всему сечению проводника. На границе же с окружающей средой плотность заряда возрастает скачком, как это показано на рис.3, В). Это и создает дивергенцию поля E на границе проводника с внешней средой, что ввиду противоположности ее знака на обеих границах и приводит в конечном итоге к отсутствию дивергенции поля вне проводника. Иными словами, равенство нулю поля внутри проводника является в действительности следствием отсутствия в нем градиентов потенциала, а не плотности заряда. В самом же проводнике электроны распределены равномерно, как это показано на рис.3, В, а их плотность ρ > 0, что и объясняет пропорциональность сопротивления проводника его сечению.

Более отдаленные последствия предложенной здесь концепции электрического поля объемных зарядов требует отдельного рассмотрения.

Литература

 

1.  Эткин В.А. Энергодинамика (Синтез теорий переноса и преобразования энергии).- СПб, Наука, 2008. - 409 с.


 Ваша оценка:

РЕКЛАМА: популярное на Lit-Era.com  
  А.Ардова "Мужчина не моей мечты" (Любовное фэнтези) | | V.Aka "Девочка. Первая Книга" (Современный любовный роман) | | О.Алексеева "Принеси-ка мне удачу" (Современный любовный роман) | | Т.Мирная "Чёрная смородина" (Фэнтези) | | Ю.Эллисон "Хранитель" (Любовное фэнтези) | | Н.Самсонова "Жена мятежного лорда" (Любовные романы) | | А.Эванс "Право обреченной 2. Подари жизнь" (Любовное фэнтези) | | А.Эванс "Право обреченной. Сохрани жизнь" (Любовное фэнтези) | | Д.Дэвлин "Аркан душ" (Любовное фэнтези) | | М.Боталова "Академия Невест" (Любовное фэнтези) | |
Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
Э.Бланк "Атрион. Влюблен и опасен" Е.Шепельский "Пропаданец" Е.Сафонова "Риджийский гамбит. Интегрировать свет" В.Карелова "Академия Истины" С.Бакшеев "Композитор" А.Медведева "Как не везет попаданкам!" Н.Сапункова "Невеста без места" И.Котова "Королевская кровь. Медвежье солнце"

Как попасть в этoт список
Сайт - "Художники" .. || .. Доска об'явлений "Книги"