Расторгуев Александр: другие произведения.

От элементов Аристотеля и атомов Демокрита до Периодического закона

Журнал "Самиздат": [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь]
Peклaмa:
Конкурс фантастических романов "Утро. ХХII век"

Конкурсы романов на Author.Today
Женские Истории на ПродаМан
Рeклaмa
 Ваша оценка:

  
   []
  
  
  ОТ ЭЛЕМЕНТОВ АРИСТОТЕЛЯ И АТОМОВ ДЕМОКРИТА
  ДО ПЕРИОДИЧЕСКОГО ЗАКОНА МЕНДЕЛЕЕВА
  
  
  Жизнь замечательных идей
  
  
  Оглавление
  
  Имя России
  Античность
  Алхимики
  Новое время
  Атомистика в действии
  Периодический закон
  Кое-что о Менделееве
  
  
  
  ИМЯ РОССИИ
  
  В 2008 году телевизионный канал "Россия" запустил проект "Имя России". В числе приглашённых был и бессменный ведущий программы "Очевидное - невероятно" Сергей Петрович Капица. Кто-то продвигал Петра I, кто-то - Екатерину II, и дальше по списку: Суворов, Александр Невский, Александр II, Ленин (его, конечно же, Зюганов, положение обязывает), Сталин, Столыпин (его, кажется, Никита Михалков). А Сергею Петровичу предложили Ломоносова, но он выбрал Менделеева - и довёл его в рейтинге телезрителей до третьего места.
  
  Дмитрий Иванович был разносторонним человеком. Он занимался наукой, промышленностью, сельским хозяйством, экономикой, подготовил Россию к переходу на метрическую систему мер и весов, изобрёл бездымный порох, искал мировой эфир, думал о будущем России и летал на воздушном шаре во время солнечного затмения 1887 года, а на досуге клеил чемоданы и очень гордился, когда однажды услышал о себе: "Да это же известный чемоданных дел мастер господин Менделеев!"
  
  Он второй в ряду великих русских натурфилософов. В науке он брался за глобальные проблемы и при всём разнообразии научных пристрастий и направлений, в которых он работал, он всю жизнь по существу занимался одним и тем же: познанием природы вещей. На чём всё держится и из чего всё состоит? Подобными вопросами задавались ещё греки.
  
  
  АНТИЧНОСТЬ
  
  При словах "Периодический закон" в памяти всплывают слова "атом" и "элемент", две стороны одного и того же: то, что для физиков атом, для химиков - элемент. Однако эти два понятия долгое время существовали и развивались независимо, а сошлись в одном понятии только в XVII веке.
  
  Слово "элемент" - римского происхождения, довольно позднего, I век до н. э.; греки говорили "стохейа". Означало оно "стихия", что звучит почти так же, или "начало". Слово "атом" - греческого происхождения, оно появилось в V веке до н. э., в учении первых атомистов.
  
  С лёгкой руки популяризаторов науки и авторов учебников считается, что атомистика родилась из наблюдений за песчинками, которые уносит ветер, или за пылинками, мельтешащими в луче света. На самом деле она появилась как решение проблем, с которыми столкнулась греческая философия на заре своего развития.
  
  Греки довольно рано пришли к двум фундаментальным идеям; одну они унаследовали от своих предшественников - это представление о том, что за возникающими и исчезающими вещами стоит вечная первоматерия, которая предстаёт перед нами в различных обличьях, а вторая укрепила их скептическое отношение к чувственному познанию - таковое было признано недостоверным, и путь к истине, считали греки, лежит только через рациональное мышление; вот почему они не ставили эксперименты, ограничиваясь размышлениями и умозрением, а вовсе не из презрения к физическому труду, хотя они его, видимо, презирали.
  
  Радикальную позицию в этом вопросе занимал Парменид. Мы видим, что мир множественен, что всё меняется, говорил он, а на самом деле мир един и неподвижен, а то, что мы видим, не более чем иллюзия. Тому же он учил и своих учеников.
  
  Читаем у Пушкина:
  
  Движенья нет, сказал мудрец брадатый.
  Другой смолчал и стал пред ним ходить -
  Сильнее он не мог бы возразить.
  Хвалили все ответ замысловатый...
  
  Этот случай описан в исторической литературе, Пушкин взял его оттуда, но он ничего не говорит о том, что произошло после. А после брадатый мудрец отходил ученика палкой, ибо недостойно философа аргументировать, обращаясь к свидетельству чувств.
  
  По одной из версий, одним из учеников Парменида был некто Левкипп. Может быть, как раз тем самым, что "стал пред ним ходить". А по другой версии Левкипп был учеником Зенона, но и в том, и в другом случае учение Парменида ему не нравилось. Как, впрочем, и многим.
  
  Спасая Парменида от критики, его ученик Зенон придумал несколько парадоксов (что-то около сорока, из них до нас дошло девять), в которых доказывал, что представление о бесконечной делимости пространства и времени внутренне противоречиво. В историю его парадоксы вошли как апории Зенона. Самая известная из них приводит к парадоксальному выводу, что Ахилл никогда не догонит черепаху.
  
  Левкипп решил эту проблему: он поступил с доводами Зенона так же, как Гордий поступил с гордиевым узлом - разрубил их одним ударом: раз деление до бесконечности приводит к противоречию, то значит, должен быть предел деления - иными словами, он объявил, что пространство и время дискретны, а потом распространил принцип дискретности и на вещество.
  
  Так родилось учение об атомах. Оно ассоциируется у нас в основном с именем не Левкиппа, а его ученика Демокрита. Этим мы обязаны позднейшему атомисту Эпикуру - последователю, оказавшемуся неблагодарным к своим предшественникам: над Демокритом он насмехался, называя его Пустокритом (по-гречески это звучало несколько иначе), а Левкиппа и вовсе объявил несуществующим философом, так что на какое-то время Левкиппа даже вычеркнули из истории философии.
  
  Демокрит говорил: всё есть атомы и пустота, а прочее - мнение; атомы обладают формой и величиной (Эпикур добавил: и весом), они не имеют ни вкуса, ни цвета, ни запаха - всё это рожается в наших ощущениях (совершенно в духе философов XVII века Локка и Гоббса, с их учением о первичных и вторичных качествах).
  
  По сути дела, атом был всё тем же бытием Парменида: вечным, неизменным и неделимым, но теперь это бытие было множественно, и при этом возникала пустота, чего не могло быть у Парменида, который говорил, что бытие есть, а небытия нет.
  
  Учение об атомах воспринял и использовал в своей философии также Платон, а Лукреций написал поэму "О природе вещей", первое научно-популярное сочинение, по которому философы и учёные Нового времени знакомились с атомистикой древних.
  
  Однако атомистика, столь близкая нам по духу, не стала брэндом античной философии, а с окончанием античности и вовсе была забыта; в умах возобладало представление о том, что мир многообразен, но един, и в основе всего сущего лежит некая праматерия, или первоматерия (она же первоначало, первоэлемент, архэ).
  
  Фалес Милетский - его называют первым греческим философом (и его же неизменно включают число семи мудрецов древности) - сравнивал первоматерию с водой. Как вода может превратиться в лёд, а может испариться и смешаться с воздухом, так и праматерия может являться нам и в самых разнообразных формах и видах.
  
  Его ученик Анаксимандр не сравнивал первоматерию ни с чем, потому что считал, что она ни на что не похожа из того, что мы знаем по опыту, но она принимает всевозможные обличья, и из неё состоит всё, что мы видим вокруг. Но дал ей название - апейрон.
  
  Анаксимен, ученик Анаксимандра, философский внук Фалеса, первоэлементом назвал воздух: при расширении он превращается в огонь, а при сжатии - во всё остальное.
  
  Гераклит Эфесский, учение которого разобрали на пословицы: всё течёт, всё изменяется, и в одну реку нельзя войти дважды - в основу всего сущего, однако, положил не воду, а огонь, - самое подвижное и изменчивое из того, что мы знаем.
  
  Ксенофан, живший раньше него, философ и поэт, говорил, что начало всему сущему - земля и вода, и он был, похоже, первый плюралист в вопросе о природе вещей.
  
  Эмпедокл свёл всё перечисленное в единую картину: земля, вода, воздух и огонь (при желании в этих началах можно увидеть четыре состояния вещества, наблюдаемые в земных условиях: твёрдые тела, жидкости, газы и плазма).
  
  Аристотель добавил к земным началам небесный эфир, который не участвует в земных превращениях, управляет движением небесных светил и подчиняется своим законам, отличным от земных.
  
  После Аристотеля, который сказал, кажется, всё о природе вещей, философы потеряли интерес к натурфилософии и сосредоточились на этике, а натурфилософия постепенно ветшала и приходила в упадок. В V веке византийский император Юстиниан разогнал последнюю философскую школу, и на этом закончилась и античная философия, и сама античность.
  
  
  АЛХИМИКИ
  
  Идею непрерывного превращения веществ подхватили алхимики Средневековья. Они не были философами, скорее это были люди с магическим складом ума и склонностью к мистицизму, однако с деловой жилкой - они искали способ получения золота из неблагородных металлов, и желательно в особо крупных размерах.
  
  На эти поиски ушло несколько столетий, и хотя они не увенчались успехом, усилия алхимиков не пропали даром. В теоретическую схему Аристотеля они внесли ртуть, серу и соль, из осторожности назвав их не элементами, а принципами; это были не конкретные вещества, а "философские" ртуть, сера и соль, символизировавшие летучесть, горючесть и огепостоянство. Поскольку и с принципами ничего не получалось, алхимики пришли к выводу, что для окончательного превращения необходима ещё одна сущность, которую они назвали философским камнем. Замечательная особенность этой сущности заключалась в том, что она лишь способствовала окончательному превращению в золото, но сама в эту трансмутацию не вступаа - по сути, алхимики пришли к идее химического катализатора.
  
  В ходе поисков философского камня алхимики много чего открыли, но вместо того, чтобы обмениваться добытыми знаниями, они прятали их друг от друга. Главная же заслуга алхимиков в том, что своими бесплодными поисками рано или поздно должны были они убедили в конце концов, что сама исходная идея неверна.
  
  Врач Гогенгейм, живший в первой половине XVI века и более известный как Парацельс, призвал коллег-алхимиков оставить поиски философского камня и направить свои усилия на изготовление лекарств. Это направление получило название иатрохимии и просуществовало вплоть до Роберта Бойля; методы её оставались прежними, и даже исходная идея долгое время сомнению не подвергалась - достаточно сказать, что алхимией занимался Ньютон; однажды он даже записал в журнале журнале: "Вонь страшная. По-видимому, я близок к цели".
  
  
  НОВОЕ ВРЕМЯ
  
  XVII век начался с опровержений Аристотеля. Первые робкие попытки были предприняты веком раньше: Коперник поменял Землю и Солнце местами, оговорив при этом, правда, что это всего лишь математическая схема удобная для расчётов движения светил, и она не противоречит Священному Писанию, а Николай Кузанский прямо уже прямо говорил, что законы природы одинаковы для земли и неба, и Земля - это благородная звезда, обладающая особым светом, теплом и влиянием (под которым он, по-видимому, понимал земное притяжение).
  
  Итак, XVII век: Галилей открывает истинный закон падения тел, Торричелли открывает пустоту, которую отрицал Аристотель, Пьер Гассенди возрождает учение об атомах, а Роберт Бойль, один из реформаторов естествознания, сближает понятия "атом" и "элемент". Рождение академий, переход к коллективному познанию, отрицание авторитетов (девиз Горация "Ничего со с лов") и торжество эксперимента над спекулятивными рассуждениями.
  
  Впрочем, не всё было так однозначно. Как пишет Марио Льоцци в своей "Истории физики", научное сообщество в XVII веки делилось на перипатетиков, картезианцев и экспериментаторов; Декарт, например, стоявший ещё одной ногой в Аристотеле, экспериментам предпочитал мысленные опыты (и то же самое можно сказать о Галилее); оттолкнувшись от соображения, показавшегося ему очевидным, Декарт дедуктивно пришёл к выводу, что свеча в замкнутом объёме будет гореть сколь угодно долго - а экспериментатор Отто фон Герике без труда опроверг это на опыте.
  
  Экспериментатором был и Роберт Бойль. Он был аристократ по рождению, седьмой сын и четырнадцатый ребёнок в семье государственного секретаря Ирландии, поэтому отцовский титул унаследовал не он, а один из его старших братьев, а потом его племянник. Вот почему, говоря, что Бойль - отец химии, иногда многозначительно добавляют: "И дядя графа Коркского". Но и без титула Бойль был достаточно обеспеченным человеком, что позволяло ему заниматься наукой на собственные деньги, иметь хорошую лабораторию и множество ассистентов (одним из которых был начинающий естествоиспытатель Роберт Гук).
  
  О Бойле говорят: он сделал для химии то, что Бэкон сделал для естествознания в целом. Он указал новые цели, а новые цели породили новые задачи. Надо было научиться избавляться от примесей и работать с чистыми веществами, отличать соединения от смесей, приучить себя пользоваться весами и термометром, а после того как (уже в начале XVIII века) была изобретена пневматическая ванна, у химиков наконец появилась возможность учитывать возникающие в ходе реакций "вещества-невидимки", которым ван Гельмонт дал название "газ", произведя это слово от греческого "хаос".
  
  Бойль разработал методы химического анализа; до него главными и, кажется, единственными анализаторами были огонь и гипотетический универсальный растворитель, о котором толком никто не знал, что это такое. Бойль обратил внимание на то, что важно не только разлагать вещества, но изучать и обратный процесс синтеза.
  
  Что касается элементов, которые он призвал изучать, то, в отличие от Иоахима Юнгиуса, своего предшественника, который признал золото, серебро, ртуть и серу настоящими элементами, Бойль от подобных признаний воздержался. Он даже позволил себе усомниться в том, что элементы в природе вообще существуют, это должен подтвердить опыт - в общем, как говорил Жюль Ренар, учёный - это человек, который в чём-то почти уверен...
  
  В числе заслуг Бойля перед наукой были и чисто моральные. Он показал, в том числе, собственным примером, что химия достойна занятий ею не только ради получения золота и изготовления лекарств, но и ради неё самой. Намеченной им программы исследований химикам хватило лет на полтораста - считается, что её завершил Антуан Лавуазье.
  
  
  АТОМИСТИКА В ДЕЙСТВИИ
  
  Хотя античная атомистика, возрождённая в XVII веке, была принята без возражений и даже пользовалась популярностью, она долгое время оставалась философским украшением, красивой безделушкой, пока её, уже в XIX веке, не привёл в действие Джон Дальтон. К Дальтону мы перейдём чуть позже, а пока посмотрим, что учёные и философы Нового времени думали об атомах.
  
  Представления об атомах, о том, как они выглядят, были различны и носили умозрительный характер - это были гипотезы, которые нельзя было ни подтвердить, ни опровергнуть опытным путём; впрочем, и в этих умозрениях был свой резон. До закона всемирного тяготения считалось, что силы сцепления атомов подобны силам, возникающим при смачивании и слипании, а так как эти силы носят контактный характер и зависят от площади соприкосновения, то особый интерес вызывали формы атомов; Бойль, например, допускал, что атомы одной и той же формы могут укладываться разными способами, сохраняя при этом прочность целого, и образовывать разные вещества; таким образом, он оставлял надежду алхимикам. И в самом деле, если бы золото имело своего бедного аллотропического родственника, широко представленного в природе, подобно тому как его имеет алмаз, можно было бы штамповать золотые слитки в промышленных масштабах, подобно тому как из графита делают алмазы.
  
  После открытия закона всемирного тяготения контактные силы были отброшены, а вопрос о формах атомов отошёл на задний план, и в фокусе внимания оказались гипотетические дальнодействующие силы, которые на больших расстояниях подчиняются закону обратных квадратов, а на близких превращаются в силы отталкивания.
  
  Никакого прогресса в течение всего XVIII века в атомистике не наблюдалось - она застыла на уровне предыдущего столетия, если только не считать оригинальной гипотезы Руджера Бошковича, предположившего, что атомы суть точечные центры сил, пронизывающих пространство - картина, нарисованная им, через много лет поразила воображение Майкла Фарадея и натолкнула его на мысль о силовых линиях магнитного поля (а идея точечности частиц была востребована физиками XX века).
  
  Джон Дальтон, сын бедного ткача, не получивший из-за недостатка средств университетского образования, первым поставил вопрос об атомных весах. До него этот вопрос мало кто интересовал, а его предшественник мистер Хиггинс для простоты даже предположил, что все атомы, даже разных элементов, - одного веса.
  
  Дальтон первым проделал путь восхождения от абстрактного к конкретному: исходя из самых общих положений атомистики, он открыл закон кратных отношений, а потом подтвердил его экспериментально - это был первый шаг к теоретической химии.
  
  В 1803 году Дальтон составил и обнародовал первую таблицу атомных весов, в которой всё, за исключением атомного веса водорода, принятого за единицу, оказалось потом неверным. Но идея получила развитие, и по мере того как открывались новые элементы (за полвека их число удвоилось), дополнялась и уточнялась таблица их атомных весов, при этом величины у разных авторов отличались друг от друга, и иногда сильно.
  
  Дело в том, что в самой процедуре определения атомного веса сна определённом этапе возникает неопределённость. Возьмём для примера 2 г водорода и 16 г кислорода - это гремучая смесь, которая после взрыва без остатка превращается в водяной пар.
  
  А дальше - неопределённость.
  
  Если принять, что в молекула воды - это (в современных обозначениях) HO, как это, из принципа простоты, принял Дальтон, то атомный вес кислорода - 8 водородных единиц, а если H2O, как сейчас, то атомный вес сразу удваивается. И хотя в 1808 году, всего 5 лет спустя после появления первой таблицы Дальтона, природа преподнесла исследователям роскошный подарок - подсказку, как сделать правильный выбор и не ошибиться, эта неопределённость оставалась ещё много лет, вплоть до открытия Периодического закона, на основании которого Дмитрий Иванович удвоил атомный вес урана и перенёс его из середины таблицы элементов в самый конец.
  
  Итак, в 1808 году Гей-Люссак открыл закон объёмных отношений. В частности, он экспериментально установил тот факт, что объёмы водорода и кислорода, выделяющиеся при электролизе воды, относятся друг к другу как 2:1. Он пришёл к гениальной догадке: число частиц (пользуясь современной терминологией) в равных объёмах разных газах при одинаковых условиях, давлении и температуре, одинаково; эта догадка вошла в историю науки как гипотеза (а потом и закон) Авогадро.
  
  Казалось бы, вопрос о составе молекулы воды решён. Но Дальтон отвергает гипотезу о равенстве числа частиц - она противоречит его представлению об атомах: твёрдые шарики, окутанные шубами из теплорода и находящиеся (даже в газах) вплотную друг к другу. Дальтон полагал, что атомы разных элементов различаются не только по весу, но и по объёму, который они занимают. Само по себе это, конечно, справедливо. Но у него не было ни малейшего представления о скоростях молекул в газах, и для него было бы большой неожиданностью узнать, что размерами атомов в газах по сравнению с расстояниями между ними можно пренебречь. У Дальтона это совсем не так, и если размеры у атомов разных элементов разные, и они друг к другу впритык, то и уложить их в один и тот же объём одним и тем же количеством нельзя.
  
  Чтобы опровергнуть Гей-Люссака, Дальтон повторяет его опыт и получает вместе 2:1 отношение 1,9: 1. Жалкое опровержение! И Дальтон находит сильный довод - указывает на реакцию окисления азота с образованием оксида NO, которая в современных обозначениях выглядит так:
  
  N + O = NO.
  
  Объём газа после синтеза должен был бы уменьшиться вдвое, между тем как экспериментально установлено, что он практически не меняется.
  
  И тут в игру вступил Авогадро. Приняв гипотезу Гей-Люссака, он предложил простое и изящное решение этой головоломки:
  
  N2 + O2 = 2 NO.
  
  Было две молекулы - и стало две молекулы; объём не меняется. Это и есть настоящая гипотеза Авогадро: атомы простых веществ, как соединений, могут объединяться в молекулы.
  
  Но большинство химиков это решение отвергают. Уже открыт электролиз, новый мощный метод химического анализа, и многие склоняются к мысли, что природа химической связи заключается в электричестве. На этом фундаменте строится электростатическая теория Берцелиуса, согласно которой молекула химического соединения состоит из атомов с противоположными зарядами (понятия ион тогда ещё не существовало). А значит атомы одного и того же элемента, как одноименно заряженные, будут отталкиваться и образовать молекулу не могут.
  
  Прошло немало лет, прежде чем химики вернулись к гипотезе о молекулах простого вещества; путь лежал через органическую химию, перед которой электростатическая теория вынуждена была сложить оружие: в органических соединениях водород сплошь и рядом проявлял себя как двойной агент, выступая то как положительный, то как отрицательный заряд, что никак в теорию Берцелиуса не укладывалось, а сам её автор от безысходности даже предположил, что в органических соединениях, возможно, действуют силы, свойственные только живым организмам.
  
  Вот с таким багажом подошли химики к первому своему конгрессу, который состоялся летом 1860 года в Карлсруэ. К этому времени было уже известно около 60 элементов, и для большинства из них были правильно определены атомные веса. Путь к открытию Периодического закона был расчищен.
  
  
  ПЕРИОДИЧЕСКИЙ ЗАКОН
  
  Менделеев говорил: "У меня есть предшественники, но нет соавторов". Первым его предшественником был немецкий химик Иоганн Дёберейнер, обративший в 1817 году внимание на то, что атомные веса некоторых близких по своим свойствам металлов образуют арифметическую прогрессию: атомный вес стронция с хорошим приближением равняется полусумме атомных весов кальция и бария; сгруппированные таким образом элементы он назвал триадами. 12 лет спустя им были обнародованы ещё две триады: Li, Na, K и S, Se, Te; однако дальнейший анализ показал, что простых закономерностей тут нет, и попытки найти что-то ещё были надолго прекращены.
  
  В 1864 году Дж. Ньюлендс открыл правило октав: если расставить элементы в порядке возрастания атомного веса, восьмой элемент повторяет свойства первого; всего выходило 7 октав. В его таблице имелись недостатки: в ряде случаев два элемента занимали одну клетку (впрочем, та же история будет потом и у Менделеева с лантаноидами), а кроме того, в ней не было места для новых элементов. Систематика Ньюлендса впечатления не произвела. Профессор физики Дж. Фостер из Глазго пошутил: а по алфавиту не пробовали расставить? Может быть, там тоже какие-нибудь закономерности обнаружатся. К слову сказать, с прохладным приёмом коллег столкнулся через пять лет и Менделеев: выслушав его сообщение, знаменитый химик-органик Зинин сказал: "Дмитрий Иванович, займись делом". Было у Фостера и серьёзное замечание: он сказал, что не может согласиться с тем, что марганец и хром так далеки друг от друга, а железо так далеко от никеля и кобальта. На шутку старшего коллеги Ньюлендс совершенно серьёзно ответил, что пробовал располагать элементы также по удельному весу, но никаких закономерностей не обнаружил.
  
  В том же 1864 году свою первую таблицу опубликовал немецкий химик Лотар Мейер, претендовавший впоследствии на соавторство в открытии Периодического закона. И в том же году была опубликован, без всяких комментариев, таблица Уильяма Одлинга. А двумя годами ранее месье Шанкуртуа объявил, что свойства элементов являются функцией чисел, и расположил элементы спиралью по поверхности цилиндра.
  
  Первую таблицу, им самим же признанную удачной, Дмитрий Иванович составил, по его собственным воспоминаниям, 1 марта 1869 года. В ней уже чётко прослеживалась периодичность химических свойств, и это не было случайной находкой, на которую он натолкнулся, разложив удачно пасьянс из карточек с названиями элементов. В отличие от своих предшественников Менделеев за простой систематикой увидел закон природы - и продемонстрировал его предсказательную силу. Менделеев не просто оставил пустые клетки в первой же своей таблице, для трёх из них он подробно описал физические и химические свойства элементов, которые предстояло открыть. Лотар Мейер впоследствии признавался, что у него просто не хватило духу решиться на то, на что решился его русский коллега, но дело, как мы видим, не в силе духа, а в силе мысли, хотя и силы духа Менделееву было не занимать - так, рассказывая на склоне лет о том, как повздорил с начальством, узнав, что его по ошибке писаря отправляют учительствовать не в Одессу, а в Симферополь, Дмитрий Иванович заметил: "Я и сейчас не из смирных, а тогда и вовсе был кипяток".
  
  Точность его предсказаний поразила современников, она поражает и сейчас. Для экаалюминия Менделеев указал даже метод, каким этот элемент будет открыт: спектральный анализ. И действительно, в 1875 году французский химик Лекок де Буабодран в спектре гипсовой обманки заметил неизвестную ранее линию; новый элемент был выделен, исследован и получил название галлий. Ознакомившись с результатами, Менделеев сделал замечание: плотность элемента сильно занижена и должна составлять примерно 6 г/см3. Это задело его французского коллегу, и всё-таки он измерил вторично и получил 5,9 г/см3.
  
  Открытия двух других предсказанных элементов, скандия и германия, положило конец эпохе случайных открытий: поиск новых элементов принял осмысленный, целенаправленный и, я бы даже сказал, несколько рутинный характер.
  
  Периодическому закону предстояло два испытания: лантаноиды, которые пришлось в конце концов упаковывать в одну клетку, и инертные газы, которые тоже не было понятно, куда деть; загадка лантаноидов была раскрыта в XX веке, после того как физики расшифровали генетический код таблицы Менделеева, а инертные газы потребовали расширения Периодической системы, что и было сделано, в полном соответствии с Периодическим законом: Уильям Рамзай, получивший в 1906 году Нобелевскую премию за открытие инертных газов, так и сказал: "Мы действовали по примеру учителя нашего Менделеева".
  
  Говоря, что у него нет соавторов, Дмитрий Иванович имел в виду прежде всего Лотара Мейера. Он и в самом деле мог стать соавтором Периодического закона, ему не хватило малого. Его вариант таблицы, изданный в 1869 году, чуть позже менделеевской, во многом с ней совпадал, а в чём-то оказался потом даже точнее, и Мейер тоже ясно прослеживал периодические изменения свойств элементов по мере возрастания атомного веса, но пустых клеток в его таблице не было, и он ничего не сказал о ещё не открытых элементах. Позднее Майер говорил, что не решился делать столько далеко идущие предположения на основании столь скудных и не до конца проверенных фактов, как это сделал его русский коллега. Но скорее всего он просто не догадался. В этом и заключается разница между хорошим учёным и великим учёным.
  
  Менделеев настолько был убеждён в Периодическом законе, что на одном только его основании выправил и уточнил уже известные атомные веса. Но главным его триумфом стала догадка о том, что атомный вес - это внешнее проявление чего-то другого, более фундаментального, вот почему он дважды нарушил основной принцип - возрастание атомного веса - и поставил более тяжёлый теллур перед йодом, а более тяжёлый кобальт перед никелем. И в этом, как мы теперь знаем, оказался абсолютно прав.
  
  
  КОЕ-ЧТО О МЕНДЕЛЕЕВЕ
  
  Великие люди часто становятся героями анекдотов и легенд, и Менделеев не исключение. И таблицу-то он во сне увидел, осталось только сесть и записать, и вкусную водку изобрёл, и, сидя в кустах под Парижем, посчитал проходящие цистерны с кислотой и раскрыл состав бездымного пороха, который держали в секрете французы, и на вступительных-то экзаменах в университет он провалился, да ещё - о ужас! - на экзамене по химии...
  
  Самая трогательная легенда, конечно, - о вкусной и полезной водке. Менделеев действительно занимался спиртовыми растворами, в 1865 году он защитил докторскую диссертацию "Рассуждение о соединении спирта с водою". Но предметом его исследований были высокие и низкие концентрации. Он первым получил 100% спирт, что позволило англичанам, французам и немцам исправить спиртометрическую таблицу. А ещё он установил, что максимальная плотность спиртового раствора достигается, когда на одну молекулу спирта приходится 3 молекулы воды - из этого потом выросла его гидратная теория растворов.
  
  Бездымный порох Менделеев действительно изобрёл, но без подсказки французов, и у него вышел лучше; потом этот рецепт запатентовали американцы, и в Первую мировую войну Россия закупало порох Менделеева у Соединённых Штатов...
  
  Есть доля истины и в легенде о том, что первый вариант таблицы элементов он увидел во сне. Творческий процесс не линеен, в нём чередуются и сознательная работа мозга, и работа подсознания (интересные наблюдения на этот счёт можно найти в книге Жака Адамара "Исследование психологии процесса изобретения в области математики"). Менделеев и в самом деле сделал первый набросок после освежающего сна, но перед этим он долго и упорно работал, а если лечь с пустой головой, то так с пустой головой и проснёшься. На самом деле он шёл к Периодическому закону, можно сказать, со студенческих лет. В первой своей работе, выполненной в студенчестве, он исследовал изоморфизм, его магистерская диссертация посвящена удельным объёмам, а в Германии, куда его направили совершенствоваться в химии, он, вместо того чтобы мыть пробирки и смешивать вещества, изучал капиллярность, в надежде угадать характер молекулярных сил (и попутно открыл абсолютную температуру кипения).
  
  А легенда об известном чемоданных дел мастере господине Менделееве, о котором знал Санкт-Петербург? Ну, известный - это, может быть, преувеличение, но чемоданы он делал, и услышав однажды о себе такую характеристику, остался доволен.
  
  Но вот легенда о том, что он поступал в Санкт-Петербургский университет и провалился на экзамене по химии неверна в своей основе: по закону того времени он, уроженец Тобольска, имел право поступать лишь в Казанский университет, к которому Тобольск был приписан, да и вступительных по химии быть не могло, потому что химию в гимназии не преподавали.
  
  У Менделеева был свой, особый язык. Его даже народным не назовёшь. Он говорил не кругло, не гладко, но образно и понятно. Он восхищался Пироговым: "Вот это был врач! Насквозь человека видел и сразу мою натуру понял". О народе: "Нет, мне прямо вольно с ним, с народом-то, и говорю-то свободнее, и меня понимает тут и ребёнок, мне весело с ними, к ним душа лежит". А вот что писал своей будущей невесте молодой Менделеев, путешествуя со своим другом Сеченовым по Европе:
  
  "Народ, то есть сами блузники, рабочие Парижа, это для меня было новое племя, интересное во всех отношениях. Эти люди, заставлявшие дрожать королей и выгонявшие власть за властью, - поразительны: честны, читают много, изящны даже, поговорят обо всем, живут настоящим днем - это истинные люди жизни, понимаешь, что встрепенутся толпы таких людей, так хоть кому будет жутко. Это класс, совершенно отличный от буржуазии, от торгашей: те сладки, вертлявы - просто французики, каких мы знаем, плутишки, барышники, не те, которым принадлежит история Франции. Ну, на месяц этих интересов хватит вдоволь..."
  
  Зато не вымысел, что Менделеев, будучи уже в возрасте, в одиночку совершил полёт на воздушном шаре - это случилось во время солнечного затмения 1887 года. Затмение продолжалось какие-то полторы минуты, и когда оно кончилось, а облака рассеялись, и воздушный шар высох, Дмитрий Иванович обнаружил, что летит на высоте 3,5 вёрст... Вот и река Дубна, шар летит над нашими просторами, вот озерцо Золотая вешка, в котором и сейчас хорошо ловится карась... Менделеев в корзине, внизу перед его взором проплывают поля, луга, леса, пашни... "Я совершенно ясно слышал не только мычание коров, ржание лошадей и удары топора, но слышал даже пение петухов, а когда начал опускаться, то на высоте 2 вёрст услышал и голоса людей; в одной деревне мне кричали: "Спущайся, свежая рыба есть!" Он приземлился в поле, его окружили крестьяне, потом пришёл урядник, оценил обстановку и сказал: "Ты не беспокойся, за пузырём приглядим... И за тобой тоже".
  
  Александр Блок писал о своём тесте:
  
  "Он давно всё знает, что бывает на свете. Во всё проник. Не скрывается от него ничего. Его знание самое полное. Оно происходит от гениальности, у простых людей такого не бывает... При нём вовсе не страшно, но всегда - неспокойно, это оттого, что он всё и давно знает, без рассказов, без намёков, даже не видя и не слыша. Это всепознание лежит на нём очень тяжело. Когда он вздыхает и охает, каждый раз вздыхает обо всём вместе; ничего отдельного или отрывочного у него нет - все неразделимо. То, что другие говорят, ему почти всегда скучно, потому что он всё знает лучше всех..."
  
  Правда и то, что Дмитрий Иванович несколько лет посвятил поискам мирового эфира. До ньютония, как он назвал атом эфира, правда, добраться ему не удалось - это была, может быть, единственная вершина, которую он так и не покорил, но из каких-то соображений он всё-таки оценил массу атома эфира, и она по странному совпадению попадает в интервал, который теоретики отводят сейчас для массы нейтрино... Но это уже, как говорится, в записную книжку писателя-фантаста.
  
  P. S. И последний сюжет - не из жизни Менделеева, как ещё один штрих к его портрету. Конец 80-х годов прошлого столетия, Владимир Бортко снимает "Собачье сердце", в роли профессора Преображенского утверждён Евгений Евстигнеев. Сейчас профессор выйдет из подъезда и встретит Шарика. Открывается дверь, вспоминает Бортко, и из подъезда выходит... Плейшнер! Стоп! Евгений Александрович, профессор так не ходит... Вы будете меня учить, как ходит профессор? У вас же Плейшнер! А кто должен быть? Бортко на секунду задумался... Менделеев! Дубль второй. Мотор! Дверь открывается, и из подъезда выходит - профессор Преображенский, каким мы его знаем теперь...
   P. S. S. Хотя древняя идея о том, что в основе всего лежит некая праматерия, давно сдана в архив, её снова и снова проверяют на профпригодность. Философские идеи, которыми пронизана наука, утрачив свою производительность, не уходят бесследно; через какое-то время, века или тысячелетия, к ним возвращаются, и они предстают в новом виде. Пустота античных атомистов и мировой эфир Декарта-Аристотеля сошлись в квантовой теории поля и превратились в физический вакуум, спор приверженцев корпускулярной теории света Ньютона и сторонников волновой Гюйгенса закончился корпускулярно-волновым дуализмом де Бройля, античная стихия огня возродилась в XVII веке в флогистонной теории горения, а столь популярные сегодня "тёмная материя" и "скрытая энергия" очень напоминают тонкие материи и неуловимые флюиды XVI-XVIII веков. Не забыта и праматерии. В начале XIX века Уильям Праут предположил, что все атомы состоят из атомов водорода, а в начале XX века популярна была гипотеза об электромагнитном происхождении массы. Сейчас физики склонны считать, что у природы множественное начало: есть лептоны, кварки, и они не похожи друг на друга. Но кто знает, что они будут склонны считать, когда настанет завтра?
 Ваша оценка:

Популярное на LitNet.com М.Атаманов "Искажающие реальность"(Боевая фантастика) Р.Прокофьев "Стеллар. Инкарнатор"(Боевая фантастика) О.Гринберга "Я твоя ведьма"(Любовное фэнтези) Е.Флат "Невеста из другого мира 2. Свет Полуночи"(Любовное фэнтези) О.Дремлющий "Тектум. Дебют Легенды"(ЛитРПГ) И.Громов "Андердог"(ЛитРПГ) М.Атаманов "Искажающие реальность-5"(ЛитРПГ) Ю.Эллисон, "Наивняшка для лорда"(Любовное фэнтези) Е.Флат "Невеста из другого мира"(Любовное фэнтези) В.Василенко "Стальные псы 4: Белый тигр"(ЛитРПГ)
Хиты на ProdaMan.ru Серенада дождя. Юлия ХегбомМоре счастья. Тайна ЛиКнига 2. Берегитесь, адептка Тайлэ! Темная КатеринаСеребряный берег. Мария МорозоваЗагадки прошлого. Лана АндервудХолодные земли. Анна ВедышеваОт меня не сбежишь! Кристина ВороноваКак две капли воды. Ирис ЛенскаяБеспокойное Наследство. Надежда умирает последней. MelethРаненный феникс. Грейс
Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
С.Лыжина "Драконий пир" И.Котова "Королевская кровь.Расколотый мир" В.Неклюдов "Спираль Фибоначчи.Пилигримы спирали" В.Красников "Скиф" Н.Шумак, Т.Чернецкая "Шоколадное настроение"

Как попасть в этoт список
Сайт - "Художники" .. || .. Доска об'явлений "Книги"