Сапунов Павел: другие произведения.

Многоугольник с одной стороной

Журнал "Самиздат": [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь]
Peклaмa:
Конкурс "Мир боевых искусств. Wuxia" Переводы на Amazon!
Конкурсы романов на Author.Today
Конкурс Наследница на ПродаМан

Устали от серых будней?
[Создай аудиокнигу за 15 минут]
Диктор озвучит книги за 42 рубля
Peклaмa
 Ваша оценка:


Многоугольник с одной стороной

  
  
   1. ОБ ЭМОЦИЯХ, О ПЛОХОЙ ПОГОДЕ, О ГЕОМЕТРИИ
  
   Иногда трудно себе представить, с какими сильными эмоциями и яркими впечатлениями бывают связаны математические изыскания, так сказать, не совсем нестандартного характера. А разве есть математика стандартная, вполне обычная, причёсанная как бильярдный шар? Все задачи в минуту своего открытия являются новаторскими, и даже выглядят иной раз не совсем прилично, впрочем, как и сам человек в минуту своего рождения.
   Новая задача - это всегда как признание в любви... Признание математика в любви к этому миру, признание мира в любви к математику... Это всегда шок, всегда поэзия, жуткий прорыв в музыке, шокирующий авангард в живописи, это... Это как музыка Поля Мориа.
  
   Честно говоря, в то утро, когда всё это произошло, я ни о чём необычном не думал. Я просто решил вспомнить, "чему там равна сумма углов треугольника". А заодно - четырёхугольника, пятиугольника, и так далее... В общем, текли обычные мысли образованного человека, характерные для обычного понедельника, обычной пасмурной погоды и обычного декабря...
   Я всегда думаю медленно и редко ("как и все" - по признанию Эйнштейна - "один раз в неделю"), а в то утро особенно. Так я думал...
   Думал я так.
  
   Сумма углов треугольника равна числу пи:
  
   S3 = ?
  
  
   Четырёхугольника:
  
   S4 = 2?
  
   Значит, думаю, общая формула суммы углов N-угольника пишется так:
  
   SN = (N-2)? (1)
  
   Вообще-то, это надо строго доказывать, но в то утро не хотелось. Поэтому я думал так. Вот треугольник:
   0x01 graphic
   Хороший 3-угольник, думал я. Но вот не менее хороший вопрос: в какой момент он становится четырёхугольником? Когда мы нарисуем четвёр